Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study
نویسندگان
چکیده
BACKGROUND There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis per se rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI). METHODS Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations. RESULTS HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001). CONCLUSIONS In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.
منابع مشابه
Impact of buffering hypercapnic acidosis on cell wounding in ventilator-injured rat lungs.
We measured the effects of raising perfusate pH on ventilator-induced cell wounding and repair in ex vivo mechanically ventilated hypercapnic rat lungs. Lungs were randomized to one of three perfusate groups: 1) unbuffered hypercapnic acidosis, 2) bicarbonate-buffered hypercapnia, or 3) tris-hydroxymethyl aminomethane (THAM)-buffered hypercapnia. The membrane-impermeant label propidium iodide w...
متن کاملComparison of the effects of moderate and severe hypercapnic acidosis on ventilation-induced lung injury
BACKGROUND We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 "doses" (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role...
متن کاملHypercapnia: is it protective in lung injury?
Hypercapnic acidosis has been regarded as a tolerated side effect of protective lung ventilation strategies. Various in vivo and ex vivo animal studies have shown beneficial effects in acute lung injury setting, but some recent work raised concerns about its anti-inflammatory properties. This mini-review article aims to expand the potential clinical spectrum of hypercapnic acidosis in criticall...
متن کاملHypercapnic acidosis attenuates endotoxin-induced acute lung injury.
Deliberate induction of prophylactic hypercapnic acidosis protects against lung injury after in vivo ischemia-reperfusion and ventilation-induced lung injury. However, the efficacy of hypercapnic acidosis in sepsis, the commonest cause of clinical acute respiratory distress syndrome, is not known. We investigated whether hypercapnic acidosis--induced by adding CO2 to inspired gas--would be prot...
متن کاملModerate and prolonged hypercapnic acidosis may protect against ventilator-induced diaphragmatic dysfunction in healthy piglet: an in vivo study
INTRODUCTION Protective ventilation by using limited airway pressures and ventilation may result in moderate and prolonged hypercapnic acidosis, as often observed in critically ill patients. Because allowing moderate and prolonged hypercapnia may be considered protective measure for the lungs, we hypothesized that moderate and prolonged hypercapnic acidosis may protect the diaphragm against ven...
متن کامل